Suggested Course Plan for a UC Riverside Major in Electrical Engineering

<table>
<thead>
<tr>
<th>Fall Quarter</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 010</td>
<td>4</td>
<td>CS 013</td>
<td>4</td>
<td>CS 061</td>
<td>4</td>
</tr>
<tr>
<td>C++ Programming I</td>
<td></td>
<td>Introduction to CS for Engineers</td>
<td></td>
<td>Machine Org. & Assembly Lang. Prog.</td>
<td></td>
</tr>
<tr>
<td>EE 010</td>
<td>1</td>
<td>ENGL 001B</td>
<td>4</td>
<td>EE 020</td>
<td>4</td>
</tr>
<tr>
<td>Intro to Electrical Engineering</td>
<td></td>
<td>Intermediate Composition</td>
<td></td>
<td>Linear Methods for Engr. Analysis</td>
<td></td>
</tr>
<tr>
<td>ENGL 001A</td>
<td>4</td>
<td>MATH 009B</td>
<td>4</td>
<td>MATH 009C</td>
<td>4</td>
</tr>
<tr>
<td>Beginning Composition</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
<td>First Year Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 009A</td>
<td>4</td>
<td>PHYS 040A</td>
<td>5</td>
<td>PHYS 040B</td>
<td>5</td>
</tr>
<tr>
<td>First Year Calculus</td>
<td></td>
<td>Physics (Mechanics)</td>
<td></td>
<td>Physics (Heat/Waves/Sound)</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

EE 001A & EE 011A	4		
Engineering Circuit Analysis I & Lab			
MATH 046	4	EE/CS 120A	5
Differential Equations	Logic Design		
PHYS 040C	5	MATH 010A	4
Physics (Electricity/Magnetism)	Multivariable Calculus	Multivariable Calculus	
CHEM 001A & CHEM 011A	5		
General Chemistry and Lab	Breadth	Humanities/Social Sciences	

Third Year

EE 100A	4	EE 100B	4	EE 114	4
Electronic Circuits	Electronic Circuits		Prob., Random Variables & Processes		
EE 110A	4	EE 105	4	EE 132	4
Signals & Systems	Model. & Simulation of Dynamic Sys.	Automtatic Control			
Breadth _______	4	EE 110B	4	Breadth _______	4
Humanities/Social Sciences		Signals & Systems	Humanities/Social Sciences		
EE 128 or EE 155	4				
Breadth _______	4				
BIOL 002, 003 or 005A/05LA					

Fourth Year

EE 133	4	EE 175B	4	ENGR 181W	4
Solid-State Electronics	Senior Design Project	Technical Communications			
EE 141	4	Technical Elective**	4	Breadth _______	4
Digital Signal Processing			Humanities/Social Sciences		
EE 175A	4	Technical Elective**	4	Technical Elective**	4
Breadth _______					
Humanities/Social Sciences					

Total Units: 182
Maximum Units: 224

ENGLISH COMPOSITION
A "C" or better is required in three quarters of English Composition courses to satisfy the graduation requirement. ENGR 181W fulfills the third quarter of English Composition.

BREADTH REQUIREMENTS
For an approved list of Breadth courses: http://student.engr.ucr.edu/policies/requirements/breadth.html.

- Humanities: (3 courses)
- Biological Science
- BiOL 002, 003, or 005A/05LA
- Ethnicity: (1 course)
 1. **Upper Division: (2 courses)**
 2. **TECHNICAL ELECTIVES**

To earn a B.S., you must complete all College and University requirements. For a complete list: www.catalog.ucr.edu.

Course Plan is subject to change.
Electrical Engineering Technical Electives and Focus Areas

To ensure depth, the choice of technical electives must include at least one coherent sequence of at least three (3) electrical engineering courses (lead course plus two additional) in one focus area of electrical engineering as defined below. In total, you must complete 4 courses (at least 16 units) of Technical Elective coursework.

(1) Communications, Signal Processing and Networking (CSPN)

- **EE 141 - Lead Course**
 - Digital Signal Processing (4)
- EE 115
 - Intro to Communications (4)
- EE 117
 - Electromagnetics II (4)
- EE 118
 - Radio Frequency Circuit Design (4)
- EE 128
 - Data Acquis., Instrum., & Process Ctrl (4)
- EE 146
 - Computer Vision (4)
- EE 150
 - Digital Communications (4)
- EE 152
 - Image Processing (4)
- ENGR 160
 - Intro to Engineering Optimization Techniques (4)

(2) Control and Robotics (CR)

- **EE 132 - Lead Course**
 - Automatic Control (4)
- EE 128
 - Data Acquis., Instrum., & Process Ctrl (4)
- EE 142
 - Pattern Recognition and Analysis for Sensor Data (4)
- EE 144
 - Introduction to Robotics (4)
- EE/ME 145
 - Robotic Planning & Kinematics (4)
- EE 146
 - Computer Vision (4)
- EE 151
 - Introduction to Digital Control (4)
- EE 152
 - Image Processing (4)
- ENGR 160
 - Intro to Engineering Optimization Techniques (4)

(3) Embedded Systems and VLSI

- **EE 128 - Lead Course**
 - Data Acquis., Instrum., & Process Ctrl (4)
- EE 135
 - Analog Integrated Circuit Layout and Design (4)
- EE 147
 - Graphics Processing Unit Computing and Programming (4)
- EE 165
 - Design for Reliability of Integrated Circuits and Sys. (4)
- EE/CS 168
 - Introduction to VLSI Design (5)
- CS 161
 - Design and Architecture of Computer Systems (4)
- ENGR 160
 - Intro to Engineering Optimization Techniques (4)

(4) Nanotechnology, Advanced Materials, and Devices (NMDC)

- **EE 133 - Lead Course**
 - Solid-State Electronics (4)
- EE 117
 - Electromagnetics II (4)
- EE 136
 - Semiconductor Device Processing (4)
- EE 137
 - Intro to Semiconductor Optoelectronic Devices (4)
- EE 138
 - Electronic Properties of Materials (4)
- EE 139
 - Magnetic Materials (4)
- EE 162
 - Intro to Nanoelectronics (4)

(5) Power Engineering (PE)

- **EE 155 - Lead Course**
 - Power System Analysis (4)
- EE 117
 - Electromagnetics II (4)
- EE 123
 - Power Electronics (4)
- EE 128
 - Data Acquis., Instrum., & Process Ctrl (4)
- EE 153
 - Electric Drives (4)
- ENGR 160
 - Intro to Engineering Optimization Techniques (4)

Required Lead Course for the Focus Area